Exercise 2

(a) Find y^{\prime} by implicit differentiation.
(b) Solve the equation explicitly for y and differentiate to get y^{\prime} in terms of x.
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

$$
2 x^{2}+x+x y=1
$$

Solution

Part (a)
Differentiate both sides with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(2 x^{2}+x+x y\right)=\frac{d}{d x}(1) \\
\frac{d}{d x}\left(2 x^{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(x y)=0 \\
2 \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(x y)=0 \\
2(2 x)+(1)+\left[\frac{d}{d x}(x)\right] y+x\left[\frac{d}{d x}(y)\right]=0 \\
4 x+1+(1) y+x\left(y^{\prime}\right)=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
y^{\prime}=-\frac{4 x+1+y}{x}
$$

Part (b)

Solve for y first.

$$
\begin{gathered}
x y=1-2 x^{2}-x \\
y=\frac{1-2 x^{2}-x}{x}=x^{-1}-2 x-1
\end{gathered}
$$

Then take the derivative.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x^{-1}-2 x-1\right) \\
& =-x^{-2}-2
\end{aligned}
$$

Plug the formula for y into the result of part (a) to see if the same answer is obtained.

$$
y^{\prime}=-\frac{4 x+1+\left(x^{-1}-2 x-1\right)}{x}=-\frac{2 x+x^{-1}}{x}=-2-x^{-2}
$$

